A positive spatial advection scheme on unstructured meshes for tracer transport
نویسندگان
چکیده
منابع مشابه
A constrained transport scheme for MHD on unstructured static and moving meshes
Magnetic fields play an important role in many astrophysical systems and a detailed understanding of their impact on the gas dynamics requires robust numerical simulations. Here we present a new method to evolve the ideal magnetohydrodynamic (MHD) equations on unstructured static and moving meshes that preserves the magnetic field divergence-free constraint to machine precision. The method over...
متن کاملConservative Semi-Lagrangian Advection on Adaptive Unstructured Meshes
A conservative semi-Lagrangian method is designed in order to solve linear advection equations in two space variables. The advection scheme works with finite volumes on an unstructured mesh, which is given by a Voronoi diagram. Moreover, the mesh is subject to adaptive modifications during the simulation, which serves to effectively combine good approximation quality with small computational co...
متن کاملA cell-centered diffusion scheme on two-dimensional unstructured meshes
We propose a new cell-centered diffusion scheme on unstructured meshes. The main feature of this scheme lies in the introduction of two normal fluxes and two temperatures on each edge. A local variational formulation written for each corner cell provides the discretization of the normal fluxes. This discretization yields a linear relation between the normal fluxes and the temperatures defined o...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملA monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D
We present a new monotone finite volume method for the advection–diffusion equation with a full anisotropic discontinuous diffusion tensor and a discontinuous advection field on 3D conformal polyhedral meshes. The proposed method is based on a nonlinear flux approximation both for diffusive and advective fluxes and guarantees solution non-negativity. The approximation of the diffusive flux uses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2002
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(01)00486-1